
Nutrient Credit Trading Opportunities in Maryland

Lisa Wainger, PhD

University of Maryland Center for Environmental Science Chesapeake Biological Lab Agricultural and Environmental Law Conference 11/14/19

Cap and Trade in the Chesapeake Bay watershed

Chesapeake Bay Total Maximum Daily Load (TMDL) or *pollution diet*

- Goal: restore *aquatic habitat* in estuary
- Cap: Roughly 20-25% reduction in nitrogen, phosphorus & sediment from 2010 loads

How might trading work?

INDUSTRY

High costs Power plants, industrial factories, wastewater treatment plants can buy credits

FARM Low costs

Farmers use money from credits for projects to reduce nutrient runoff

Trading is a bit different in Maryland

- Major WWTPs are a type of credit *seller* not buyer
 - Major wastewater treatment plants (WWTPs) have been upgraded with user fees (Bay Restoration Fund)
 - Have capacity to do additional management to reduce emissions below permitted emission levels
- Buyers are industrial dischargers, stormwater permit-holders and some minor WWTPs
- Sellers are those who voluntarily reduce nutrients using an approved practice and who otherwise meet all regulatory or baseline requirements

How legal & other risks affect trading market

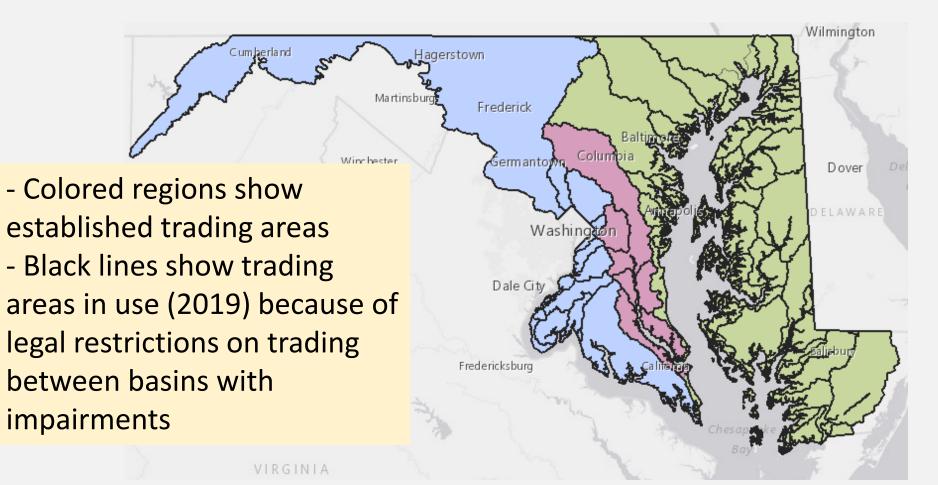
- Trading between regulated and unregulated parties creates novel risks
 - Buyer concern Legal liability for pollution reduction does not transfer
 - Sellers concern Risk exposure via credit verification activities
 - Actions to generate credits cannot be used to comply with regulations affecting seller
- Legal liability for buyers is managed with specialized contracts (bi-lateral trades), by aggregators who offer pooled credits, and state reserve pool
- Cost savings or earnings must compensate buyers and sellers for taking risks – *risk premium*

How does trading lower costs of Bay restoration?

Total Costs with Trading

Total Costs without Trading

THEFT


Pay those with low costs of reductions to offset high cost reductions

Median Annualized Costs of Practices in Use

	Median \$/lb of N reduction	Median \$/lb of P reduction
Stormwater BMPs (excluding storm drain cleaning and practices n<3)	\$1,082	\$8,384
Agricultural BMPs	\$16	\$489

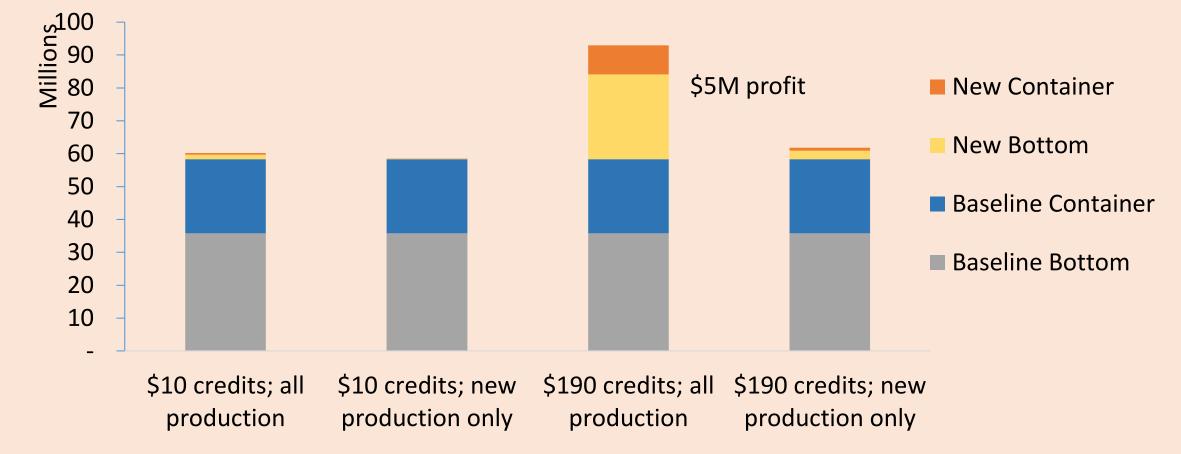
Data from Price et al. 2019. Cost Analysis of Stormwater and Agricultural Practices for Reducing Nitrogen and Phosphorus Runoff in Maryland.

Market price of credits is uncertain Price depends on supply and demand by trading area

Credit Generation in Aquaculture

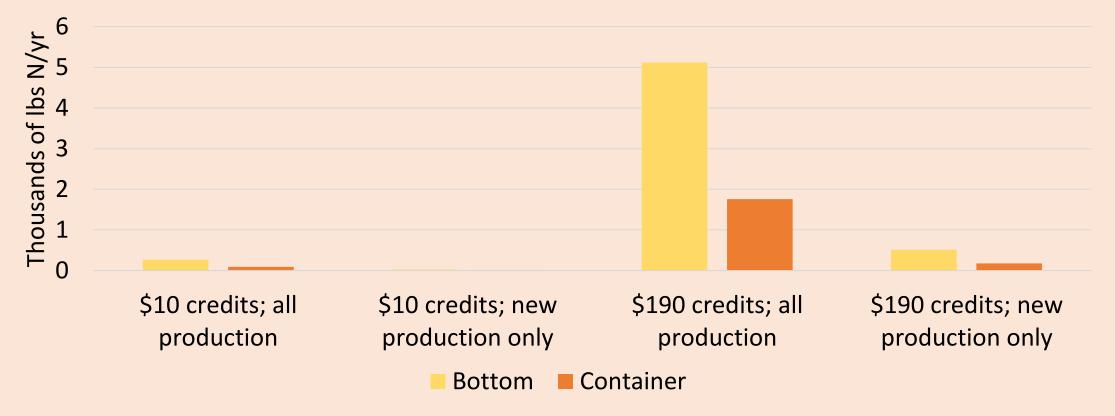
Credit Generation in Aquaculture

How Oyster Aquaculture Earns Nutrient Credits (example)


	N content (g/oyster)	P content (g/oyster)
2.5 – 3.49" diploid	0.09	0.01
2.5 – 3.49" triploid	0.13	0.01

- Example operation
 - Diploid oysters harvested: 10,000 bushels
 - Average count per bushel: 275 132 oysters
 - Average shell height: 3.33 inches
 - 247 kg N removed (545 lbs N)
 - 27 kg P removed (60 lbs P)

Trading has the potential to increase oyster aquaculture production


Production in Millions of Oysters/yr

Data from Weber, Wainger et al. 2018. The potential for nutrient credit trading or economic incentives to expand Maryland oyster aquaculture

Aquaculture Growth Would Create Extra Nitrogen Reductions

Nitrogen Sequestered by Scenario

Results of Aquaculture Industry Modeling

- If nitrogen credit prices are sufficiently high and all production is eligible for trading, oyster aquaculture could be encouraged to grow more quickly than current trends
- Stacking nitrogen and phosphorus credits (as allowed in current policy) magnifies this effect
- Results are dependent on the assumption that higher profits will drive industry growth

Conclusions on Water Quality Trading in Maryland

- Trading can lower costs of achieving the nutrient and sediment cap to restore the Bay
- Credit buyers are those with high costs or other impediments to permit compliance
- Credit prices will have a large range statewide due to supply and demand conditions per geographic market region
- Prices will need to include a risk premium to address legal/other concerns
- Potential financial gains are motivating participation in MD's credit market

