

UNIVERSITY OF MARYLAND AGRICULTURE LAW EDUCATION INITIATIVE MPOWERING THE STATE

## **Panel Discussion**

## Chlorpyrifos and the Legal Landscape of Pesticide Regulation

## 2018 Agricultural and Environmental Law Conference November 8, 2018

Ronald David Myers Extension Educator, Agriculture <u>myersrd@umd.edu</u>





LOGIN 💧 Search SEARCH

Resistance Management for Sustainable Agriculture and Improved Public Health



common target site and therefore may be freely rotated with each other unless there is reason to expect or Sub-oroups represent distinct structural classes believed to have the same mode of action.

eventions are not sustainable, and alternative ontions should be sought · Actives in groups 8 (Miscellaneous non-specific multi-site inhibitors), 13 (Uncouplers) and UN are thought not to share a

exclusions as not sustainable, and attenuate options should be sought: exclusions as not sustainable, and attenuate options should be sought: disease, kund as mongoloba, hockase of ab duck of attenuates. Sub-groupOAL Henyfhazor, tie grouped with cidentraine because they enable cross-residance even though they are structurally distinct, and the singer late for these componds a unitowork. Thorizontain has been added to this group because it is a close analogo them. of clofentezine and is expected to have the same mode of action.

. The poster is for educational purposes only. In on presented is accurate to the best of our knowledge at the time of publication, but IRAC or its member companies cannot accept responsibility for how this information is used or interpreted. Advice should always be sought from local experts or advisors, and health and safety recommendations followed. Representative compounds are shown. Please visit www.irac-online.org for the complete IRAC classification.

Respiration

Midgut

Growth & Develop

Unknown or Non-specific

CropLife  $\Upsilon$ 



## Insecticide Mode of Action Classification:

A key to effective insecticide resistance management



Insecticide Resistance Action Committee

### Introduction

IRAC promotes the use of a Mode of Action (MoA) classification of insecticides as the basis for effective and sustainable insecticide resistance management (IRM). Insecticides are allocated to specific groups based on their target site. Reviewed and re-issued periodically, the IRAC MoA classification list provides farmers, growers, advisors, extension staff, consultants and crop protection professionals with a guide to the selection of insecticides or acaricides in IRM programs. Effective IRM of this type preserves the utility and diversity of available insecticides and acaricides. A selection of MoA groups is shown below.



### IRAC website: www.irac-online.org

### Effective IRM strategies: Alternations or sequences of MoA

All effective insecticide (and acaricide) resistance management (IRM) strategies seek to minimise the selection for resistance from any one type of insecticide or acaricide. In practice, alternations, sequences or rotations of compounds from different MoA groups provide sustainable and effective IRM. This ensures that selection from compounds in the same MoA group is minimised. Applications are often arranged into MoA spray windows or blocks that are defined by the stage of crop development and the biology of the pest(s) of concern. Local expert advice should always be followed with regard to spray windows and timings. Several sprays of a compound may be possible within each spray window but it is generally essential to ensure that successive generations of the pest are not treated with compounds from the same MoA group. Metabolic resistance mechanisms may give crossresistance between MoA groups, and where this is known to occur, the above advice must be modified accordingly.

### Nervous System

Groups 1A & B Acetylcholinesterase (AChE) inhibitors Carbamates and Organophosphates Group 2 GABA-gated chloride channel antagonists Cyclodienes OCs and Phenylpyrazoles (Fiproles) Group 3 Sodium channel modulators DDT, pyrethroids, pyrethrins Group 4A Acetylcholine receptor (nAChR) agonists Neonicotinoids Group 5 nAChR agonists (Allosteric) [not group 4A] Spinosyns Group 6 Chloride channel activators Avermectins, Milbemycins Group 22 Voltage dependent sodium channel blocker Indoxacarb

specific mode of action (selective feeding blockers) Pymetrozine, Flonicamid, etc.



### Metabolic processes

Group 20 Mitochondrial complex III electron transport inhibitors Acequinocyl, Fluacrypyrim, etc Group 21 Mitochondrial complex I electron transport inhibitors Rotenone, METI acaricides Group 23 Inhibitors of lipid synthesis Tetronic acid derivatives

### Moulting & Metamorphosis

Group 18 Ecdysone agonist / disruptor Diacylhydrazines (e.g. Tebufenozide) Group 7 Juvenile hormone mimics JH analogues, Fenoxycarb, Pyriproxyfen, etc.

#### Midgut Group 11 Microbial disruptors of

insect midaut membranes Toxins produced by the bacterium Bacillus thuringiensis (Bt): Bt sprays and Cry proteins expressed in transgenic Bt crop varieties (specific cross-resistance subgroups)



Metabolic Processes

Many groups acting on a wide range of metabolic processes including:

Group 12 Inhibitors of oxidative phosphorylation. disruptors of ATP

Diafenthiuron & Organotin miticides Group 12 Uncouplers of oxidative phosphorylation via disruption of H proton gradient - Chlorfenapyr



Non-specific MoA Group 10 Compounds of non-specific mode of action (mite growth inhibitors) Clofentezine, Hexythiazox, Etoxazole

### Non-specific MoA Group 9 Compounds of non-

**Cuticle Synthesis** 

Groups 15 and 16 Inhibitors of chitin biosynthesis Benzoylureas (Lepidoptera and others), Buprofezin (Homoptera)



## Specimen Label

### RESTRICTED USE PESTICIDE

For retail sale to and use only by Certified Applicators or persons under their direct supervision and only for those uses covered by the Certified Applicator's certification.





## INSECTICIDE

<sup>®</sup>Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

## For control of listed insects infesting certain field, fruit, nut, and vegetable crops.

| Group                                                            | 1B               | INSECTICIDE |
|------------------------------------------------------------------|------------------|-------------|
| phosphorothioate<br>Other Ingredients                            |                  |             |
| Total<br>Contains 4 lb of chlorpyri<br>Contains petroleum distil | ifos per gallon. |             |

### **Precautionary Statements**

### Hazard to Humans and Domestic Animals

EPA Reg. No. 62719-220

## WARNING

May Be Fatal If Swallowed • Harmful If Absorbed Through Skin • Causes Moderate Eye Irritation

Avoid contact with skin, eyes or clothing.

Table 2. EPA Screening Level Estimates

### Table 2. EPA Screening Level Estimates of Agricultural Uses of Chlorpyrifos (059101).\*\*

|    | Crop                  | Lbs.A.I.  |       | Crop                     | Lbs.A.I. |
|----|-----------------------|-----------|-------|--------------------------|----------|
|    | Alfalfa               | 400.000   | 32    | Oranges                  | 300,000  |
| 1  |                       |           | 33    | Peaches                  | 70,000   |
| -  | Almonds               | 500,000   | 34    | Peanuts                  | 200,000  |
| 3  | Apples                | 400,000   | 35    | Pears                    | 30,000   |
| 4  | Apricots +            | 4,000     | 36    | Peas, Green              | <500     |
| 5  | Artichokes +          | <500      | 37    | Pecans                   | 300,000  |
| 6  | Asparagus             | 20,000    | 38    | Peppers                  | 2.000    |
| 7  | Avocados +            | 3,000     | 39    | Pistachios               | 10.000   |
| 8  | Beans, Green          | 3,000     | 40    | Plums                    | 10,000   |
| 9  | Broccoli              | 90,000    | 40    | Potatoes +               | 4,000    |
| 10 | Brussels Sprouts *    | 6,000     | 41    | Primes                   |          |
| 11 | Cabbage               | 10,000    | 0.000 |                          | 30,000   |
| 12 | Cantaloupes +         | 3,000     | 43    | Pumpkins                 | 2,000    |
| 13 | Carrots               | 1,000     | 44    | Seed Crops (NPUD'02)     | 1,000    |
| 14 | Cauliflower           | 20,000    | 45    | Sod (NPUD'02)            | 2,000    |
| 15 | Cherries              | 60,000    | 46    | Sorghum                  | 30,000   |
| 16 | Chicory * +           | <500      | 47    | Soybeans                 | 700,000  |
| 17 | Com                   | 3,000,000 | 48    | Spinach +                | 1,000    |
| 18 | Cotton                | 200,000   | 49    | Squash +                 | 1,000    |
| 19 | Cranberries (NPUD'02) | 50,000    | 50    | Strawberries             | 9,000    |
| 20 | Cucumbers             | 3,000     | 51    | Sugar Beets              | 100,000  |
| 21 | Dry Beans/Peas        | 4,000     | 52    | Sunflowers               | 20,000   |
| 22 | Figs *                | 5,000     | 53    | Sweet Com                | 100,000  |
| 23 | Grapefruit            | 60,000    | 54    | Sweet Potatoes (NPUD'02) | 100,000  |
| 24 | Grapes                | 100,000   | 55    | Tangelos                 | 2,000    |
| 25 | Hazelnuts (Filberts)  | 7,000     | 56    | Tangerines               | 6,000    |
| 26 | Lemons                | 90,000    | 57    | Tobacco                  | 100,000  |
| 27 | Lettuce +             | 4,000     | 58    | Tomatoes +               | 1,000    |
| 28 | Mint (NPUD'02)        | 50,000    | 59    | Walnuts                  | 400,000  |
| 29 | Nectarines            | 20,000    | 60    | Watermelons +            | 1,000    |
| 30 | Olives * +            | <500      | 61    | Wheat                    | 300,000  |

SLUA data sources include:

USDA-NASS (United States Department of Agriculture's National Agricultural Statistics Service)-2001 to 2006.

Private Pesticide Market Research - 2001 to 2006.

NPUD 2002 (National Pesticide Use Database) of the CropLife America Foundation California DPR data – 2000 - 2006.

These results reflect amalgamated data developed by the Agency and are releasable to the public. N/C = Not Calculated.

+ = These crops were not known to be listed on active end use product registrations when this report was run.

\*\*Source: EPA Registration Review Docket, March 18, 2009



### SAFETY DATA SHEET DOW AGROSCIENCES LLC

#### Product name: LORSBAN™ 4E Insecticide

Issue Date: 05/15/2015 Print Date: 06/04/2015

#### 11. TOXICOLOGICAL INFORMATION

Toxicological information appears in this section when such data is available.

#### Acute toxicity

#### Acute oral toxicity

Moderate toxicity if swallowed. Small amounts swallowed incidentally as a result of normal handling operations are not likely to cause injury; however, swallowing larger amounts may cause injury. Observations in animals include: Tremors.

As product: Single dose oral LD50 has not been determined. LD50, Rat, 300 mg/kg Estimated.

#### Acute dermal toxicity

Prolonged or widespread skin contact may result in absorption of potentially harmful amounts.

As product: The dermal LD50 has not been determined. Based on information for component(s): LD50, Rabbit, > 1,000 mg/kg

### Acute Oral LD50 of Common Insecticides

| Acephate (Orthane)     | 980          |
|------------------------|--------------|
| Bifenthrin (Capture)   | 375          |
| Cyfluthrin (Baythroid) | 826          |
| Chlorpyrifos (Lorsban) | 300 (96-270) |
| Carbaryl (Sevin)       | 246-283      |
| Imidacloprid (Admire)  | 450          |
| Malathion              | 2800         |
| Permethrin (Pounce)    | 2215         |

### Hazard Indicators / Signal Words

| Signal<br>Word | DANGER-<br>POISON | WARNING  | CAUTION |
|----------------|-------------------|----------|---------|
| Oral<br>LD 50  | 0 - 50            | 50 - 500 | >500    |

## Lorsban 4E $LD_{50} = 300$

 $LD_{50} = 300^{mg/kg}$ 

I weigh 185<sup>lbs</sup> – What's a lethal dose of Lorsban?

185 lbs./2.2kgs/lb. = 84kgs

300<sup>mg/kg</sup> X 84<sup>kgs</sup> = 25,200<sup>mgs</sup> (50<sup>+</sup> Tylenol size tablets)

25.20gms/28.35gms/oz. = .889ozs

 $.17ozs = 1^{tsp} (6 tsp/oz.)$ 

.889°zs/.17°zs/tsp = 5.23tsp

# **Hazard Indicators / Signal Words**

| Signal<br>Word | DANGER-<br>POISON | WARNING  | CAUTION |
|----------------|-------------------|----------|---------|
| Oral<br>LD 50  | 0 - 50            | 50 - 500 | >500    |





### SAFETY DATA SHEET DOW AGROSCIENCES LLC

#### Product name: LORSBAN™ 4E Insecticide

Issue Date: 05/15/2015 Print Date: 06/04/2015

#### Chlorpyrifos



Partition coefficient(Koc): 8151

## Table 3.4. Most Commonly Used Conventional Pesticide Active Ingredients in the Agricultural Market Sector in 2012, and their Rankings and Usage Rate Range in 2012, 2009, 2007, and 2005 Estimates (Ranked by Range<sup>1</sup> in Millions of Pounds of Active Ingredient)

| • ··· • • ··· ·        | т    | 2012  |         | 2009  |         | 2007* |         | 2005* |         |
|------------------------|------|-------|---------|-------|---------|-------|---------|-------|---------|
| Active Ingredient Type | Rank | Range | Rank    | Range | Rank    | Range | Rank    | Range |         |
| Glyphosate             | н    | 1     | 270-290 | 1     | 209-229 | 1     | 170-190 | 1     | 147-167 |
| Atrazine               | н    | 2     | 64-74   | 2     | 59-69   | 2     | 70-80   | 2     | 66-76   |
| Metolachlor-S          | н    | 3     | 34-44   | 6     | 24-34   | 4     | 27-37   | 5     | 25-35   |
| Dichloropropene        | Fum  | 4     | 32-42   | 4     | 27-37   | 6     | 24-34   | 4     | 28-38   |
| 2,4-D                  | н    | 5     | 30-40   | 5     | 24-34   | 7     | 22-32   | 7     | 21-31   |
| Metam                  | Fum  | 6     | 30-40   | 3     | 30-40   | 3     | 48-58   | 3     | 36-46   |
| Acetochlor             | н    | 7     | 28-38   | 7     | 23-33   | 5     | 25-35   | 6     | 24-34   |
| Metam Potassium        | Fum  | 8     | 16-26   | 8     | 14-24   | 13    | 6-10    | _     | 0-3     |
| Chloropicrin           | Fum  | 9     | 8-18    | 9     | 6-16    | 9     | 5-15    | 10    | 5-15    |
| Chlorothalonil         | F    | 10    | 6-16    | 11    | 6-10    | 12    | 6-10    | 13    | 6-10    |
| Pendimethalin          | н    | 11    | 6-16    | 10    | 6-16    | 10    | 6-10    | 9     | 5-15    |
| Ethephon               | PGR  | 12    | 7-11    | 12    | 6-10    | 11    | 6-10    | 11    | 7-11    |
| Mancozeb               | F    | 13    | 5-9     | 16    | 3-7     | 19    | 3-7     | 16    | 5-9     |
| Chlorpyrifos           | I    | 14    | 4-8     | 13    | 5-9     | 14    | 6-10    | 15    | 5-9     |
| Metolachlor            | н    | 15    | 4-8     | 22    | 1-5     | —     | 0-4     | _     | 0-3     |
| Hydrated Lime          | F    | 16    | 3-7     | 15    | 4-8     | 20    | 2-6     | _     | 1-5     |
| Propanil               | н    | 17    | 3-7     | 17    | 3-7     | 18    | 3-7     | 18    | 3-7     |
| Dicamba                | н    | 18    | 3-7     | 25    | 1-5     | _     | 1-5     | 22    | 1-5     |
| Trifluralin            | н    | 19    | 3-7     | 18    | 3-7     | 17    | 4-8     | 14    | 6-10    |
| Decan-1-ol             | PGR  | 20    | 3-7     | _     | 1-5     | _     | 1-5     | _     | 0-4     |
| Copper Hydroxide       | F    | 21    | 3-7     | 20    | 2-6     | 15    | 5-9     | 12    | 7-11    |
| Acephate               | I    | 22    | 2-6     | _     | 1-5     | 22    | 1-5     | 23    | 1-5     |
| Paraquat               | н    | 23    | 2-6     | _     | 1-5     | 25    | 1-5     | 24    | 1-5     |
| Methyl Bromide         | Fum  | 24    | 2-6     | 14    | 5-9     | 8     | 8-18    | 8     | 9-19    |
| Glufosinate            | н    | 25    | 2-6     | _     | 1-5     | _     | 1-5     | _     | 0-4     |

Sources: Agricultural Market Research Proprietary Data, (2007, 2009, and 2012). USDA/NASS Quick Stats (http://www.nass.usda.gov/Quick\_Stats/)



| Year - | All Insecticides <sup>1</sup> | Organophosphate Insecticides |                       |  |  |  |
|--------|-------------------------------|------------------------------|-----------------------|--|--|--|
|        | Mil lbs                       | Mil lbs                      | % of All Insecticides |  |  |  |
| 2000   | 99                            | 70                           | 71                    |  |  |  |
| 2001   | 102                           | 54                           | 53                    |  |  |  |
| 2002   | 90                            | 47                           | 52                    |  |  |  |
| 2003   | 84                            | 41                           | 48                    |  |  |  |
| 2004   | 77                            | 40                           | 52                    |  |  |  |
| 2005   | 69                            | 33                           | 48                    |  |  |  |
| 2006   | 66                            | 30                           | 46                    |  |  |  |
| 2007   | 64                            | 27                           | 42                    |  |  |  |
| 2008   | 65                            | 28                           | 43                    |  |  |  |
| 2009   | 60                            | 23                           | 38                    |  |  |  |
| 2010   | 56                            | 21                           | 38                    |  |  |  |
| 2011   | 56                            | 22                           | 39                    |  |  |  |
| 2012   | 60                            | 20                           | 33                    |  |  |  |
|        |                               |                              |                       |  |  |  |

## Table 3.7. Organophosphate Insecticide Active Ingredients Usage in the United States All Market Sectors, 2000–2012 Estimates



Source: Agricultural Market Research Proprietary Data (2000-2012). Non-Agricultural Market Research Proprietary Data (2000-2012) USDA/NASS Quick Stats (http://www.nass.usda.gov/Quick\_Stats/)



#### U.S. Environmental Protection Agency





Figure 3.3. Total Amount of Organophosphate and All Other Insecticide Active Ingredients Usage in the United States in All Market Sectors, 2000–2012

## Pesticide Residue Monitoring Program Fiscal Year 2015 Pesticide Report

U.S. Food and Drug Administration



Stavropol, Russia





FDA Market Basket Report 2014 Frequency of Pesticide Residues in Total Diet Study

Chlorpyrifos - 7.4% 0.0001-0.177 ppm N-Sample Size 1061 Items

FDA Tolerance for acceptable level varies for specific commodity from 0.01 to 13.0 ppm Referenced EPA 40 FR 29715 180.342 The Second Edition of the 20volume Oxford English Dictionary contains full entries for 171,476 words in current use CAS REGISTRY is the most authoritative collection of disclosed chemical substance information, containing more than 89 million organic and inorganic substances and 65 million sequences



The Library of Congress is the largest library in the world, with more than 158 million items on approximately 838 miles of bookshelves.

89

90

Th

91

Pa

92

U

93

Np

94

Pu

95

96

Cm

97

Bk

98

Сf

99

100

Fm

101

Md

102

No

103

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z : ?



UNIVERSITY OF MARYLAND AGRICULTURE LAW EDUCATION INITIATIVE MPOWERING THE STATE

## **Panel Discussion**

## Chlorpyrifos and the Legal Landscape of Pesticide Regulation

# **Questions?**

Ronald David Myers Extension Educator, Agriculture <u>myersrd@umd.edu</u>

