Environmental Regulation of Anaerobic Digestion

Presented by

Gary F. Kelman, Chief, AFO Division

Maryland Department of the Environment

Agriculture and Environmental Law Conference

November 20, 2015
Environmental Regulation

- Air: Emissions
- Water: Discharges
- Land: Contamination
Looking at a Source
Environmentally, you are concerned with:

• Location relative to resources;
• Exposure of potential pollutants to these resources preventing beneficial use of the air, waters of the State (ground and surface), and land.
Major Environmental Laws

- Clean Air Act
- Clean Water Act
- RCRA, CERCLA
- Community Right to Know and Toxic Release Inventory
So, looking at any manure use

- You look at potential:
 - Air emissions;
 - Water discharges; and
 - Land contamination

- Disposition of by-products of the process.
So, What Can Be Done With Manure?

(Source: Promising Manure-to-Energy Technologies for the Chesapeake Bay Watershed – A Technology Summary-September 2011)

• Fertilizer

• Manure to Energy
 – Thermochemical Processes
 • Combustion (ample O2);
 • Gasification (little O2 added);
 • Pyrolysis (no O2 added);
 • Torrefaction (no O2 added);
 • Drying (moisture removal)
Thermochemical Processes

• Pros
 – Concentrates nutrients;
 – Converts nitrogen to N2;
 – Systems more scalable for farm use; and
 – Well-suited to use dry material such as poultry litter.
Thermochemical Processes

• Cons:
 – high capital costs;
 – lack of experience using manure as an energy feedstock; and
 – concerns about pollutants in air emissions)
Thermochemical Processes

• Byproducts
 – Ash
 – Biochar
 – Syngas
 – Liquid Fuel
 – Heat
Manure Disposition 2

• Biological Processes
 – Anaerobic digestion (can produce energy)
 – Composting (no energy production)
Biological Processes

• Pros
 – Well-known with a long history of use to produce methane;
 – Potential to reduce greenhouse gases if methane is converted to CO2;
 – Used by some farms to control odors;
 – Sludge produced retains use as fertilizer;
 – Solids can be recycled as dairy bedding or soil amendment;
 – Well-suited for high-moisture manure slurries.
Biological Processes

• Cons
 – Requires large area for manure containment;
 – Can be very capital intensive;
 – Volume of nutrient-rich byproduct left is large.
Biological Processes

- Byproducts
 - Heat
 - Electricity
 - Liquid
 - Solid
Summarizing Uses of Manure – Organic Fertilizer

• Apply to land instead of chemical fertilizer
• Pros
 – Slower release than chemical fertilizer
 – Not only supplies nutrients, but enhances soil attributes (soil amendment)
 – Contains few contaminants, unlike sewage sludge
• Cons
 – Supplies both nitrogen and phosphorus, when only nitrogen may be needed
 – Bad reputation
Summarizing Uses of Manure – Source of Energy

• Burn or Anaerobically digest to generate methane

• Pros
 – Cheap energy source
 – Reduces volume

• Cons
 – Does not remove nutrients
 – Eliminates source of income for farmers
Anaerobic Digestion

• Usually Anaerobic Digestion is a treatment process used to remove pollutants from industrial wastewater;

• In this case, it IS the industrial process.
Anaerobic Digestion

- Regulated on case-by-case basis;
 - Air: Bill Paul will discuss later;
 - Water: How it’s regulated depends on where it’s built.
 - Land: Proper disposal of byproducts
Old Farmers’ Proverb

“It may be manure to you,

but it’s bread and butter to me!”